Optimisation strategy for aluminium optics using the meltspinning technology

By:
Albert Bosch, Roger Senden
RSP-Technology

Guido Gubbels, Bart van
Venrooy
TNO Science and Industry

Rochester, USA on 12 May 2009
Publication and presentation at SPIE conference ‘OPTIFAB’
Contents

• Introduction
• Materials
• Application examples
 – Moulding application
 – Baffle vane
• Conclusions
Production process

- Melting & alloying
- Meltspinning
- Chopping
- 8 inch billet compaction
Advantage of meltspun aluminium for optical application

AA-6061

RSA-6061
RSA alloys for optics

Technical challenges:

- **In general:**
 - Develop a cutting edge quality level in terms of porosities and inclusions

- **Mirrors:**
 - Match fine microstructure with increased optical performance
 - Develop large dimensions up to 1 mtr

- **Moulds:**
 - Realise high quality optical mould surface without the use of a Ni-coating
 - Increase mechanical properties at elevated temperatures
Materials

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Si</th>
<th>Fe</th>
<th>Ni</th>
<th>Cu</th>
<th>Mg</th>
<th>Zn</th>
<th>Cr</th>
<th>Zr</th>
<th>Mo</th>
<th>Mn</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA-6061</td>
<td>0,6</td>
<td>0,5</td>
<td>-</td>
<td>0,3</td>
<td>1,0</td>
<td>0,1</td>
<td>0,2</td>
<td>-</td>
<td>-</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>RSA-6061</td>
<td>0,6</td>
<td>0,2</td>
<td>-</td>
<td>0,3</td>
<td>1,0</td>
<td>0,1</td>
<td>0,2</td>
<td>-</td>
<td>-</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>RSA-601</td>
<td>1,5</td>
<td>0,5</td>
<td>0,5</td>
<td>1,2</td>
<td>1,4</td>
<td>0,6</td>
<td>0,1</td>
<td>0,2</td>
<td>-</td>
<td>1,0</td>
<td>0,2</td>
</tr>
<tr>
<td>RSA-612</td>
<td>7,0</td>
<td></td>
</tr>
<tr>
<td>RSA-905</td>
<td>-</td>
<td>2,5</td>
<td>5,0</td>
<td>2,5</td>
<td>0,6</td>
<td>-</td>
<td>-</td>
<td>0,8</td>
<td>0,8</td>
<td>1,0</td>
<td>0,6</td>
</tr>
</tbody>
</table>
Materials

RSA-6061

AA6061
Materials

RSA-6061

AA6061

Ra = 2.1 nm

Ra = 2.7 nm
Materials

RSA-6061

RSA-601
Materials

RSA-6061
Ra = 2.1 nm

RSA-601
Ra = 2.4 nm
Materials

RSA-6061

RSA-612
Materials

RSA-6061
Ra = 2.1 nm

RSA-612
Ra = 9.8 nm
Materials

RSA-6061

RSA-905 (ER 38)
Materials

RSA-6061
Ra = 2.1 nm

RSA-905 (ER 38)
Ra = 1.5 nm
Typical RMS values after diamond machining of various alloys

![RMS values graph](chart.png)
Application examples

- Moulding application
- Baffle vane
Moulding application

Source: Zeiss
Moulding application

• **Problem description:**
 – Conventional mould material: stainless steel & Ni-coating
 – Too long lead times (weeks – months)
 – Expensive due to many processing steps

• **Objectives:**
 – Evaluate RSA-905 as a moulding material
 – Realise short lead time by reducing production steps (days-weeks in stead of weeks-months)
 – Test in optical application: sunglasses
Mould after diamond turning process

Sunglass design

Source: Zeiss
• **Results:**

 - Diamond machining of RSA-905 is easy
 - Polished surface is good enough but less brilliance than Ni-coating
 - Significant reduction of lead time: ~60%
 - Significant reduction of mould cost: ~30%
 - Up till now >1,000 parts have been produced and still running
 - Moulded sunglasses are well within tolerances: optically as well as geometrically

Source: Zeiss
Baffle vane application

- PEP study (Prekwalificatie ESA Programma’s)
 - Participants: NIVR, Dutch Space and TNO
 - Fabrication 1 mm thick baffle vane (Ø300 mm)
Baffle vane

• Results:
 – Baffle vane of RSA6061-T6
 – Surface roughness 3-6 nm Rq
Conclusions

• RSP materials offer good machinability
• Best surface qualities in RSA-905 and RSA-6061
• Suitable for optical components, like
 – Moulds
 – Special optics
• Good competitor with Ni-plated applications
Acknowledgments

• Carl Zeiss
• NIVR